Promo Gallery Fruehling
img_1507_.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/img_1507_.jpg
img_1508_.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/img_1508_.jpg
IMG_1506_.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/IMG_1506_.jpg
IMG0210.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/IMG0210.jpg
IMG0195.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/IMG0195.jpg
IMG0203.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/IMG0203.jpg
IMG0181.jpg
http://www.weg-winnweiler.de/images/weg/Gallery/fruehling/IMG0181.jpg
Bei der dritten Lautrer Solar Power Competition belegen gleich zwei Teams aus Winnweiler die ersten beiden Plätze.
Wie kann die Energieversorgung in der Zukunft gesichert werden? Nach der Ära von Kernkraft, Kohle und Co. müssen sich die Industrienationen und jene auf dem Weg dorthin überlegen, welche Alternativen zur Verfügung stehen. Vor diesem Hintergrund veranstaltete die Hochschule Kaiserslautern ihren jährlichen Wettbewerb LSPC zum Thema Energiespeicherung. Speziell ging es um die Möglichkeiten lastenangepasster Stromversorgung.
Vor der Anmeldung erhielten die Bewerbergruppen die Rahmenbedingungen der Aufgabe und mussten einen Entwurf einreichen. Direkte methodische Vorgaben zur Umsetzung gab es nicht. Entscheidend war lediglich, dass eine von der Hochschule zur Verfügung gestellte Menge Energie möglichst effizient gespeichert und an ein zu bewegendes Objekt weitergegeben wurde. Ausgestattet mit einem eigenen Budget machten sich die Teams von verschiedenen weiterführenden Schulen in Rheinland-Pfalz ans Werk und konstruierte einen eigenen Energiespeicher.
Das WEG war mit zwei Teams im Rennen. Beide wählten die Verwendung von Hochleistungskondensatoren zur Speicherung der Energie und zur Bewegung der betroffenen Masse. Diese löteten sie selbst zusammen und überzeugten in der Kategorie Leistung mit hervorragenden Resultaten. Zum Lohn gab es die ersten beiden Plätze in dieser Sparte.
Der Leiter des Projekts, Physiklehrer Dr. Harry Fuchs, war mächtig stolz auf seine Schüler. Er und das gesamte Team freuen sich nun darauf, das Preisgeld zur Durchführung weiterer spannender Projekte am WEG zu verwenden.
Schülerinnen und Schüler kämpfen um den Sieg. Das Sieger-Auto von Erik und Svenja Baumgärtner (Physik-Grundkurs 11) schafft satte
8,60 m – und ist Sieger im diesjährigen Wettbewerb der Mausefallen-Autos. Zwar wurde der aktuelle Weltrekord mit 140 m nicht eingestellt – aber es machte allen viel Spaß. Auch eine Menge an technischem knoff-hoff wurde in die Konstruktionen eingebaut … physics – physics…….
school level
|
general theme
|
special theme
|
theoretical
level |
practical
level |
provision
preparation experiment |
secondary
|
optics
electrcity |
reflection
optoelectronic |
2
|
2
|
approx. 1 week
1 hour 10 min |
|
|
school level
|
general theme
|
special theme
|
theoretical
level |
practical
level |
provision
preparation experiment |
secondary
|
electricity
|
electromagnetic
induction diode |
2
|
2
|
weeks
aprox. 1 hour 5 min |
|
|
Micromechanical Airbag Sensors as Motion Sensors
(paper in german: Stetzenbach, Eckert, Jodl, Blauth, Thomas: Praxis der Naturwissenschaften Heft 2, 2003 (14-17)
Best performances in sports have always thrilled young people.
The first step towards excellence is, of course, the organization of training units. But that is – by far - not enough. Skill and experience of trainers are no longer sufficient to optimise technique and performance with their trainees. Today notebooks and digital cameras are fundamental tools in a high-tech equipment. First class swimmers, for instance, optimise their training by acceleration sensors, normally used in modern cars to perceive crash situations, to make the airbags work or to prevent cars from skidding and turning over in extreme situations of driving. With the swimmers they register all relevant acceleration processes such as racing dive, pushing off, transitions from pushing off into gliding and swimming action. The possibility of the direct registration of acceleration can be turned into a personal experience within the instructional process and leads to a practical understanding and dealing with this central term of Mechanics. In the past, instruction in Physics had to take a deviation towards acceleration via the measuring of distance and time. Today generous sponsors provide schools with adequate sensors. Following the instructions you can use them without any problem. For registration a school Interface is sufficient. Detailed information about the construction and function of the acceleration sensor can be provided by the producer.
For our experiments we have used an acceleration sensor BOSCH SMB 060. This tool can register acceleration in x- and y- direction. For the better understanding of its construction and function we look at a sensor SMB 050 which only provides a signal in x-direction.
Function:
The process of acceleration causes a steering of the Seismic Mass attached to Springs. Mobile electrodes are connected with the Seismic Mass. They are installed as Capacitors and opposed to fixed counter-electrodes. There is only a tiny gap between the counter-parts. Moving the mobile electrodes brings about changes within the Capacitors C 1 and C 2. A capacitance-voltage-transfer turns the change into a measurable voltage that is proportional to the acceleration a .
The general function can easily be understood by 11 formers.
Exp.: If you change the distance between the electrodes of a capacitor, you measure a current.
Experiment
Airbag – Sensor: Analysis of Movement
school level |
general theme |
special theme |
theoretical level |
practical level |
provision preparation experiment |
16 - 20
|
mechanics electricity |
inertia inelastic collision capacitor |
2 |
2 |
weeks ca. 15 min ca. 10 min |
Typical human movement patterns can be registered with the help of commercial airbag sensors.
Materials
|
|
Schaltung:
|
Preparation
First the airbag sensor and necessary parts must be present. A SMD Euro-Circuit-Board is needed to build up the electronic device fast. The construction of a special circuit board is more complicated.
Fig. 1: wiring scheme
Fig. 2: circuit board pinning
Calibration
Calibration is achieved by the free fall of the sensor. In picture 3 the sensor case is tied to a thread. The thread is burnt out to exclude disturbances. Picture 4 shows the voltage-time diagram. The precise reading registers 55 mV for the present acceleration of 1 g ( = 9,81 m/s2). Readings during the experiment: before the free fall, free fall, crash ...)
Fig. 3: Calibration
|
|
Experiment / Result
A test person holds tight the sensor case with his/her arm bent. The dynamic push forward of the first (picture 5) brings about the measurement diagram in picture 6: the acceleration of about 4 g is completely stopped after a time of 180 ms.
Fig. 5: Versuchsablauf and measurement diagram
|
The experiment is convincing because acceleration processes can be made visible easily and you gain precise information about the power acting.
Variations:
- Comparisons of acceleration readings of students of different gender, ages and physical conditions.
- Analysis of motions, for example running on the spot. Comparison right leg – left leg, registration of a handicap caused by an injury or walking-problem.
Hint: to exclude disturbances the sensor must be fixed with a special tape.
- Muffling caused by shoes.
- Elasticity of a football ( while bouncing, while being shot, during a dribbling).
- Fisting off a thrown ball ( So „ A goal-keeper’s fear of a penalty shot“ becomes reality).
- Acceleration processes with tennis rackets, examination of various rackets referring to muffling.
For further activities it would be great to contact a College for Physical Education and ask for more information.
The interdisciplinary work between Physical Education and Physics brings about special motivation
A sensor can also be used to gain results easily with typical acceleration processes which traditionally cause lots of problems taking measurement deviation via distance-time diagrams; for instance:
- Recording of vibration processes by fixing a sensor to a spring.
- Recording of the vibrations of a tuning-fork, the tuning-fork can directly be put on the sensor, an oscilloscope can be used for presentation- instead of a PC.
- Analysis of acceleration processes of a loudspeaker diaphragm, caution: acceleration very high, up to 35 g!!
Bild der Wissenschaft Heft1 2002, S. 90-93
Robert Bosch GmbH, Geschäftsbereich Kraftfahrzeugausrüstung 8, Postfach 30 02 40, D-70442 Stuttgart. Fax: 0711-811 2841 AE.Microelectronics@de.bosch.com
Entwurf: Peter stetzenbach, Meisterschule für Handwerker, elektromechaniker-Abteilung, Am Turnerheim 1, D-67657 Kaiserslautern, tel. 06301/3647423
Suggestion by B. Freytag: Keinen Augenblick ohne Physik, in: Praxis der Naturwissenschaften-Physik 46 (1997), Heft 7, S. 43-45